
NASA-TM-II2357

Unfavorable Strides in Cache Memory Systems

David H. Bailey

RNR Technical Report RNR-92-015

May 21, 1992

N/ A
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275a (Feb 81)

Unfavorable Strides in Cache Memory Systems

David H. Bailey

RNR Technical Report RNR-92-015

May 21, 1992

Abstract

An important issue in obtaining high performance on a scientific application running
on a cache-based computer system is the behavior of the cache when data is accessed at a

constant stride. Others who have discussed this issue have noted an odd phenomenon in

such situations: a few particular innocent-looking strides result in sharply reduced cache

efficiency. In this paper, this problem is analyzed, and a simple formula is presented that

accurately gives the cache efficiency for various cache parameters and data strides.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames Research Center, Moffett Field, CA 94035.

Introduction

Scientistsaccustomedto running large computationally intensiveapplicationson Cray
supercomputershave never had to concernthemselveswith cacheissues. However,with
the recent sharp rise in the floating point performanceof RISC workstations, many sci-
entists are now using thesesystemsfor seriouscomputations, and cacheissuescan no
longer be avoided. Another avenuefrom which supercomputerscientistshave beenintro-
ducedto cachememoriesis the recentincorporationof lZISCprocessorsinto highly parallel
supercomputers.

Many important scientific applicationsdonot featureexclusivelystrideone data access
but insteadfeature large nonunit strides. For instance,many codesperform similar oper-
ations on each dimensionof a two or three dimensionalarray. Performing computations
in the first dimensioncan be donewith unit stride, but the strides of the computations
in the other dimensionsare typically large values,and significantly degradedperformance
may result when the codesareported to cache-basedsystemswithout change.

One solution to this problem is to rewrite the code to employ array transpositions
betweenthe computational steps in eachdimension. In this way all computation can be
done at unit stride. But such revision may require substantial effort, and it may still
not result in significant performance improvement unlessthe time spent in stride one
computation is substantial enoughto offset the cost of the array transpositions.

As a result, many scientistsignorethe problem, acceptingwith a certain fatalism that
their codeswill not performwell in the nonunit stride stagesof the computation. However,
for someprogramsthe reduction in performanceis soseverethat programmersarewilling
to expend the necessaryeffort to understandand alleviate this problem.

1. Definitions and Notation

To better understand the phenomenon of performance reduction with strides, consider

the following model. Let the cache be configured as R = 2_ rows of cache lines, and assume
that each cache line contains W = 2 _ words.

It will be assumed that this cache memory system operates as follows. When a word

at an address A is fetched, it is placed in row Q, where Q is determined by zeroing the

bits in the address to the left of the rightmost r + w bits and then shifting the resulting

integer to the right by w bits (i.e. dividing by W). Note that this operation produces an

integer Q in the range 0 _< Q < R. When a single word is requested, all W words of the

W-long cache lilie that it resides in are actually fetched.

If the stride S of a vector fetch is unity, then W consecutive words reside on the same

cache line, and only that one cache line needs to be physically fetched. This is obviously

a very favorable situation. The situation is similarly quite favorable if the memory stride

is some integer less than W, since in that case many cache lines contain multiple words

required by the CPU. Many scientific applications, however, involve strides larger than W,

so that each cache line retrieved from memory contains at most one word required by the

CPU. This second case will be the focus of this paper.

Many cache-based systems employ "associativity sets", which are multiple cache lines

on eachrow. They operate asfollows. Supposea requestis madefor data at anaddressA

that lies (by the address masking operation described above) in the same row as a cache

line previously requested. Then one of the C cache lines (usually the "oldest") on that row

is replaced by the requested cache line (this will be termed a cache "flush"). In this way,

even if only one word per cache line is required by the CPU, potentially RC words may be
cached.

Unfortunately, at some strides even RC words cannot be cached because some rows are

overutilized, while other rows are underutilized. Let us consider a vector fetch of L words

with stride S and ask what fraction of the L resulting cache lines remain in the cache when

the fetch is complete. This question is of interest for two reasons: (1) a computation may

need to access this same set of L words again, and (2) if this vector fetch was a single row

of a matrix stored in column major order, the next W rows of the matrix reside in these

same cache lines. Either way, performance will be significantly improved if these cache
lines can remain in the cache.

Accordingly, the efficiency E of a vector fetch of length L will be defined as T/L, where

T is the number of cache lines that still remain in the cache when the vector fetch operation

is complete, and where L is the vector length. For simplicity, in the following it will be
assumed that L = RC.

An obvious example of an inefficient stride is a large power of two. Then all cache lines

will be fetched into the same row of the cache, and the other R- 1 rows will be completely

unutilized. The resulting efficiency is only 1/R. Clearly if an application program has

arrays whose dimensions are large powers of two, these arrays should be "padded" by

declaring their leading dimensions to be slightly larger than a power of two. Most users

of Cray systems are familiar with this tuning technique, since it eliminates bank conflicts

that may reduce performance by factors as high as 10 or 20.

2. Cache Efficiency with Non-Power-of-Two Strides

It comes as a surprise to many scientists accustomed to Crays that large power of two

strides are not the only particularly unfavorable strides for cache memory systems [3]. To

facilitate more concrete discussion in the following, we will consider the particular case

R = 32, C = 4 and W = 16. These values match the cache parameters of the IBM RS

6000/320 system. We will also assume in the following that the vector length L of the
fetch is 128.

When S = 72, it turns out that in 128 consecutive fetches, the respective cache lines

neatly fill the 32 × 4 array, resulting in perfect utilization of the cache (except that only

one word in each cache line may actually be required by the CPU). The resulting efficiency

E is unity, even though 72 is divisible by eight, a highly unfavorable situation on many

vector computers. Now consider S = 73, a completely favorable stride for most vector

computers. In this case the cache efficiency is only 0.414. The efficiencies for strides 16 to

256 are shown in Figure 1. This is obviously a very complicated function.

This curious phenomenon has been noted by others [1, 2, 3, 5]. One way to understand

it is to list the row numbers of consecutively fetched cache lines in a 128-long vector fetch,

3

4 9 13 18 22 27 31

4 9 13 18 22 27 31

4 9 13 18 22 27 31

4 8 13 18 22 27 31

4F 8 13F 18F 22F 27F 31F

4F 8 13F 17 22F 27F 31F

4F 8 13F 17 22F 27F 31F

4F 8F 13F 17 22F 26 31F

4F 8F 13F 17 22F 26 31F

4F 8F 13F 17F 22F 26 31F

3 8F 13F 17F 22F 26 31F

3 8F 13F 17F 22F 26F 31F

3 8F 12 17F 22F 26F 31F

3 8F 12 17F 22F 26F 31F

3F 8F 12 IYF 21 26F 31F

3F 8F 12 17F 21 26F 31F

3F 8F 12F 17F 21 26F 30

3F 8F 12F 17F 21 26F 30

3F 8F

Table 1: Row Numbers for Successive Fetches When S = 73

with stride 73, in a seven-wide table (see Table 1). This table also includes the notation F

to indicate instances when a cache flush would occur. It is clear from examining this table

that the root cause of this poor performance is the very nearly periodic behavior of these
row numbers.

Recall that address bits higher than position r + w are ignored when placing the cache

line in a row. Thus we may in general write the row number Q of the k-th word fetched as

Q(k) = int [w mod (kS, RW)]

where int 'denotes the greatest integer function, and where mod denotes the modulo op-

eration with results in the range between zero and the second argument minus one. The

function Q(k) is precisely periodic with period RW. But when the stride S is exactly (or

very nearly) a simple fraction of RW, then this function is also precisely (or very nearly

precisely) periodic with period nint(RW/S), where hint is the nearest integer function.

In this example, RW = 512 and S = 73. Indeed, the fraction Q = 73/512 is very

close to the simple fraction 1/7. In fact, 7 x 73 = 511, so that every seventh value of

rood(kS, RW) differs by only one, and when divided by 16 the resulting row numbers are

identical for 16 consecutive columns. But a string of 16 consecutive identical row numbers

results in 12 flushes, since only four of these can be accommodated in a single row of

the cache matrix. Thus once the initial repeating rows of the cache table are filled, the

remaining fetches will produce a flush approximately 75 percent of the time.

From thesefacts one can easily compute the approximate cacheefficiencyE for this

example. In Table 1, the first 4 x 7 = 28 members of the sequence completely fill cache

rows 4, 9, 13, 18, 22, 27 and 31, except that row nine has one line empty. Thus we have

the approximation

E -- 128- 0.75 × (128- 28) = 0.414
128

which in this case exactly matches the actual efficiency determined by counting flushes in
Table 1.

As we have seen, the ratio G = 0.75 used in the above calculation results from the fact

that 7 x 73 = 511 differs from 512 by only one. When this difference D is zero (i.e. when S

is a large power of two, such as 64), then the corresponding value of G may easily be seen

to be unity. When this difference is two, G = 1/2; when the difference is three, G = 1/4;

and when the difference is four or more, G = 0. In general, it can been shown that G is

given by the formula

1

a = _max(C-D, 0)

Suppose that S/(RW) is very close to a simple fraction a/b, b < R, so that D =

IbS - aRW I is small. Compute G from the above formula. Now we may write a formula

that is an approximation to the cache efficiency E for general strides and cache parameters:

L - G(L - be)
E =

L

A graph of the efficiencies for various strides in the standard case used above, computed

with the above formula, is shown in Figure 2. By comparing Figures 1 and 2, it is clear

that this formula is very accurate, particularly at the "spikes", which are the cases of

greatest interest. In fact, the flush count F = G(L - bC), which is the key subexpression

of this formula, is (with one exception) always within one of the actual value whenever G
is nonzero.

3. A Random Stride Approximation

When the difference D is greater than C, the formula above gives perfect efficiency,

since G in that case is zero. However, the actual efficiency is somewhat less than unity

for many such cases, resulting in a low-level background "noise" (compare Figures 1 and

2). This phenomenon can be explained by nothing that when the stride S is a substantial

fraction of RW, the operation mod(kS, RW) is a good pseudorandom number generator,

and a certain number of "collisions" can be expected to occur in the resulting row num-

bers. In fact, this operation is a member of the widely studied class of linear congruential

pseudorandom number generators ([4], p. 9).

If one assumes that the assignment of memory fetches to the R rows is actually random,

then one can compute the expected cache efficiency by applying techniques of probability

5

I I I I I I I I I

J

I I I I I

£3u0!3_.JJH

o

¢q 0

q_

,-m

°f'm

I I I I I i I I i

I I I 1 I I I l I

o

c_

and statistics. The probability P(k) that an individual row contains exactly k entries after

an L-long fetch is given by the formula for a binomial distribution:

P(k) = (Lk) pk(1- p)L-k

where p = (R - 1)/R. The expected number of flushes F is then

oo

F = R _ (k - C)P(k)
k=C+l

and the resulting expected efficiency E = (L - F)/L. For the example parameters above,

this formula yields E = 0.808. The actual average efficiency, determined from the data

in Figure 1, is 0.895. This indicates that the operation mod(kS, RW) actually behaves

somewhat better than a true random number generator.

4. Finding Simple Fractions

One detail was omitted from the above discussion: how does one determine the mini-

mum difference D for a given stride, or in other words, how does one determine the best

simple fraction approximation a/b to S/(RW)?

A straightforward means to find this fraction is by exhaustion, since the periodic effect

ceases to exist when b exceeds R (since in that case bC > L). In other words, one can

compute D = IbS - aRW I for all integers a and b less than R. If the smallest such D is

less than C, then the periodic effect exists and the above formulas apply. When R is even

moderate in size, however, this procedure is time-consuming.

A more direct and elegant means to find these rational approximations a/b is to employ

the Euclidean algorithm ([4], p. 319), as follows. Start with the 2-long vector (S, RW)

and the 2 × 2 identity matrix. At a given step let x be the smaller entry of the 2-long

vector, let y be the larger entry, and let X and Y be the columns of the 2 x 2 matrix

corresponding to x and y. Compute q = int(y/x). Then replace y by y - qx and X by

X + qY. This process continues until one entry of the vector is zero. At that point one

column of the final matrix will contain the original vector (with any common factor divided

out) and the other column will contain a close rational approximation. In this application,

the Euclidean algorithm may be halted whenever an entry of the matrix exceeds R.

The operation of this algorithm in this application is more easily understood by an

example. Let us consider the particular parameters as above, with the stride S = 197. In

other words, we wish to find a good simple fraction approximation a/b to 197/512. The

algorithm proceeds as shown below. The value of q used in each step (computed from the

previous step's vector) is shown at the right.

197 1 0

197 1 0 q=2

79 1111)
79 2 1

(1)0 512 13

q=l

q=l

q=2

q=39

In this case the desired pair of integers (a, b) is in the next-to-last column generated in the

matrix, i.e. (5, 13). Note that 5/13 = 0.38462-.. is indeed an excellent approximation to

197/512 = 0.38477....

Here the final column generated, (197,512), is identical to the original vector. If S is

divisible by a power of two, then the final column generated will be the original vector with

the common power of two divided out. In that case, and if both entries of the final column

are less than or equal to R, then this final column should be selected for (a, b) instead of

the previously generated column. If for a given stride S, no pair (a, b), b < R is found that

satisfies IbS - aRW I < C, then the periodic effect does not exist, and the stride may be

considered a favorable stride.

5. Improving Cache Performance of Data Access with Strides

What can a programmer do if his or her program features a particularly unfavorable

stride? The most straightforward solution is to "pad" (slightly increase) the leading dimen-

sions of arrays having such dimensions. This solution has the advantage that in most cases

only dimension statements need to be changed, and the executable part of the program

does not need to be altered. A few extra rows of two-dimensional arrays are "wasted"

in this manner, but the resulting performance improvement is almost certainly worth the

additional memory required.

There does not appear to be a simple formula giving the optimal amount of padding

for a given unfavorable stride (i.e. array dimension) S, but in practice it suffices to merely

evaluate the efficiency function described above for S + 1, S + 2, etc. until an efficient

stride is found. In examples the author has studied, it appears that a pad of only one or
two is effective in most cases.

However, this type of tuning should not be necessary, nor should it be necessary for

programmers to analyze whether their strides are unfavorable. By applying techniques such

as those described in this paper, compilers should be able to detect unfavorable strides and

automatically adjust the appropriate array dimensions. Such adjustments will need to be

optional, since they technically depart from the Fortran-77 standard, but they will likely

be welcomed by the majority of users who prefer the compiler to shield them from such

unsavory features of the underlying architecture.

9

